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Abstract 

In this paper, we consider the fuzzy stability of -∗C ternary algebra 
homomorphisms of the following Cauchy-Jensen functional equation: 

( ) ( ) ( ).222 zfyfxfzyxf λ+λ+λ=





 λ+λ+λ  

1. Introduction 

In 1984, Katsaras defined a fuzzy norm on a linear space in [10]. At 
the same year, Wu and Fang [17] also introduced a notion of fuzzy 
normed space and gave the generalization of the Kolmogoroff normalized 
theorem for a fuzzy topological linear space. Since then, many 
mathematicians have discussed fuzzy metrics and norms on a linear 
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space from various points of view ([7], [11], [18]). In 2003, Bag and 
Samanta [4] modified the definition of Cheng and Mordeson [6] by 
removing a regular condition. 

The study of stability problems for functional equations are related to 
a question of Ulam [16] concerning the stability of group of 
homomorphisms, which was affirmatively answered for Banach spaces by 
Hyers [9]. Subsequently, the result of Hyers was generalized for 
unbounded control functions by Aoki [2], and by Rassias [15]. The paper 
of Rassias [15] has provided a great influence on the development of the 
very active area of Hyers-Ulam-Rassias stability of functional equations. 
In 1994, a generalization of Rassias theorem was obtained by Gavruta [8] 

by replacing the bound ( )pp yx +  with a general control function 

( )., yxϕ  Several stability results have been recently obtained for various 

equations and mappings with more general domains and ranges (see [1], 
[3], [13]). 

In the following, we will give some notations that are needed in this 
paper. The following notion of a fuzzy norm is taken from [4]. 

Definition 1.1. Let X be a real linear space. A function →× RXN :  
[ ]1,0  (the so-called fuzzy subset) is said to be a fuzzy norm on X, if for all 

Xyx ∈,  and all ,, R∈ts  we have 

(N1) ( ) ,0, =cxN  for ;0≤c  

(N2) ,0=x  if and only if ( ) 1, =cxN  for all ;0>c  

(N3) ( ) ,,, 





= c

txNtcxN  if ;0≠c  

(N4) ( ) ( ) ( ){ };,,,min, tyNsxNtsyxN ≥++  

(N5) ( )⋅,xN  is a non-decreasing function on R  and ( ) ;1,lim =
∞→

txN
t

  

(N6) For ( )⋅≠ ,,0 xNx  is (upper semi) continuous on .R  



FUZZY STABILITY OF -∗C TERNARY ALGEBRA … 85

A fuzzy normed linear space is a pair ( ),, NX  where X is a real linear 

space and N is a fuzzy norm on X. One may regard ( )txN ,  as the truth 

value of the statement of the norm of x is less than or equal to the real 
number t. 

Example 1.2. Let ( )⋅,X  be a normed linear space. Then 

( )






∈≤

∈>
+=

,,0,0

,,0,,
Xxt

Xxtxt
t

txN  

is a fuzzy norm on X. 

Example 1.3. Let ( )⋅,X  be a normed linear space. Then 

( )










>

≤<

<

=

,,1

,0,
,0,0

,

xt

xtx
t

t
txN  

is a fuzzy norm on X. 

Let ( )NX ,  be a fuzzy normed linear space. A sequence { }nx  in X is 

said to be convergent, if there exists Xx ∈  such that ( )txxN nn
,lim −

∞→
 

,1=  for all .0>t  In this case, x is called the limit of the sequence { }nx  

and we denote it by .lim xxN n =−  

A sequence { }nx  in a fuzzy normed space ( )NX ,  is called Cauchy, if 

for each 0>  and each ,0>t  there exists an N∈0n  such that for all 

0nn ≥  and ,0>p  we have ( ) .1, −>−+ txxN npn  

It is known that every convergent sequence in a fuzzy normed space 
is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is 
said to be complete and the fuzzy normed space is called a fuzzy Banach 
space. 

We also need the following knowledge about ∗C -ternary algebras (see 
[14], [5], [19]). Following the terminology of [1], a non-empty set G with a 
ternary operation [ ] GGGG →××⋅⋅⋅ :,,  is called a ternary groupoid 
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and is denoted by [ ]( ).,,, ⋅⋅⋅G  The ternary groupoid [ ]( )⋅⋅⋅ ,,,G  is called 
commutative, if [ ] [ ( ) ( ) ( ) ],,,,, 321321 σσσ= xxxxxx  for all Gxxx ∈321 ,,  

and all permutations σ  of { }.3,2,1  

If a binary operation o  is defined on G such that [ ] ( ) zyxzyx oo,, =  

for all ,,, Gzyx ∈  then we say that [ ]⋅⋅⋅ ,,  is derived from .o  We say 
that [ ]( )⋅⋅⋅ ,,,G  is a ternary semigroup, if the operation [ ]⋅⋅⋅ ,,  is associative, 

i.e., if [[ ] ] [ [ ] ] [ ][ ]vuzyxvuzyxvuzyx ,,,,,,,,,,,, ==  holds for all 
Gvuzyx ∈,,,,  (see [5]). 

A ∗C -ternary algebra is a complex Banach space A, equipped with a 

ternary product ( ) [ ]zyxzyx ,,,, →  of 3A  into A, which is C -linear in 

the outer variables, conjugate C -linear in the middle variable, and  
associative in the sense that [ ][ ] [ ][ ] == vyzwxvwzyx ,,,,,,,, [[ ],,, zyx  

],, vw  and satisfies [ ] zyxzyx ⋅⋅≤,,  and [ ] 3,, xxxx =  (see [1], 

[19]). Every left Hilbert ∗C -module is a ∗C -ternary algebra via the 

ternary product [ ] .,,, zyxzyx =  If a ∗C -ternary algebra [ ]( ),,,A  has 

an identity, i.e., an element Ae ∈  such that [ ] [ ]xeeeexx ,,,, ==  for 

all ,Ax ∈  then it is routine to verify that A, endowed with 

[ ]yexyx ,,o =  and [ ],,, exex =∗  is a unital ∗C -algebra. Conversely, if 

( )o,A  is a unital ∗C -algebra, then [ ] zyxzyx oo,, ∗=  makes A into a 
∗C -ternary algebra. 

A C -linear mapping BAH →:  is called a ∗C -ternary algebra 
homomorphism, if [ ]( ) ( ) ( ) ( )[ ]zHyHxHzyxH ,,,, =  for all .,, Azyx ∈  

In this paper, we will establish a fuzzy version of a generalized Hyers-
Ulam-Rassias stability for Cauchy-Jensen functional equation 

( ) ( ) ( ),222 zfyfxfzyxf λ+λ+λ=





 λ+λ+λ  (1.1) 



FUZZY STABILITY OF -∗C TERNARY ALGEBRA … 87

in the fuzzy normed linear space setting. Fuzzy stability of Jensen 
functional equations has been discussed in [12]. 

Assume that X be a linear space and ( )NY ,  be a fuzzy Banach space. 

Throughout this paper, for a given mapping ,: YXf →  we define 

( ) ( ) ( ) ( ),222,, zfyfxfzyxfzyxfC λ−λ−λ−





 λ+λ+λ=λ  

for all { }1:1 =µ∈µ=∈λ CT  and all .,, Xzyx ∈  

2. Main Results 

In this section, we will prove the fuzzy Hyers-Ulam-Rassias stability 

of ∗C -ternary algebra homomorphisms for Cauchy-Jensen functional 
Equation (1.1). 

Theorem 2.1. Let X be a linear space and ( )NZ ′,  be a fuzzy normed 

space. Let ZX →ϕ 3:  be a function such that for some 20 <α<  

( )( ) ( )( ),,,,,2,2,2 tzyxNtzyxN αϕ′≥ϕ′  (2.1) 

( ) ,1,2,2,2
2
1lim =






 ϕ′

∞→
tzyxN nnn

nn
 (2.2) 

for all Xzyx ∈,,  and all .0>t  Suppose ( )NY ,  is a fuzzy Banach 

space and YXf →:  is an odd function such that 

( ( ) ) ( )( ),,,,,,, tzyxNtzyxfCN ϕ′≥λ  (2.3) 

and 

( [ ]( ) [ ( ) ( ) ( )] ) ( )( ),,,,,,,,, szyxNszfyfxfzyxfN ϕ′≥−  (2.4) 

for all Xzyx ∈,,  and all .0, >st  Then, there is a unique ∗C -ternary 

homomorphism YXH →:  such that 
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( ) ( )( ) ( ) ,,2
,,, 








α−
ϕ′≥− txxxNtxHxfN  (2.5) 

for all Xx ∈  and .0>t  

Proof. Put 1=λ  and zyx ==  in (2.3), we have 

( ) ( )( ) ( )( ),,,,,422 txxxNtxfxfN ϕ′≥−  (2.6) 

for all Xx ∈  and all .0>t  Using (2.1) and induction on n, it is not 
difficult to show that 

( ( ) ) ( ( ) ),,,,,2,2,2 txxxNtxxxN nnnn ϕα′≥ϕ′  (2.7) 

for all Xx ∈  and all .0>t  Replacing x by xn 12 −  in (2.6) and using (2.7), 
we get 

( ( ) ( ) ) ( ( ) ),,,,,2422 11 txxxNtxfxfN nnn ϕα′≥− −−  (2.8) 

for all Xx ∈  and all .0>t  It follows from (2.8) that 

( ) ( ) ( ) ,,,,1
2

,
2
2

2
2

1211

1








α
ϕ

α
′≥










−

++−

−

nnn

n

n

n txxxNtxfxfN  

and hence, 

( ) ( ) ( ) ,,,,1
2,

2
2

2
2

2

1

1

1






 ϕ
α

′≥















 α−

+

−

−
txxxNtxfxfN

n

n

n

n

n
 

for all ,,1 Xxn ∈≥  and .0>t  Thus 

( ) ( )


















 α−

+

+=
∑ txfxfN

kn

mk
m

m

n

n 1

1
2,

2
2

2
2  

( ) ( )


















 α











−=

+

+=
−

−

+=
∑∑ txfxfN

kn

mk
k

k

k

kn

mk

1

1
1

1

1
2,

2
2

2
2  

( ) ,,,,1
2 






 ϕ
α

′≥ txxxN  

whence 



FUZZY STABILITY OF -∗C TERNARY ALGEBRA … 89

( ) ( ) ( )
( )

,,,,1,
2
2

2
2

1
21

2
















ϕ
α

′≥









−

+α
+=∑ kn

mk

m

m

n

n txxxNtxfxfN  (2.9) 

for all ,,0 Xxmn ∈≥>  and .0>t  

Fix .Xx ∈  Since, ( ( ) ) 1,,,1lim 2 =ϕ
α

′
∞→

sxxxN
s

 and 
n

n 





 α∑∞

= 20  is 

convergent, ( )












n

n xf
2
2  is a Cauchy sequence in ( )., NY  Since ( )NY ,  is a 

fuzzy Banach space, this sequence converges to some point ( ) .YxH ∈  
Define YXH →:  by 

( ) ( ) ,
2
2lim n

n

n
xfNxH

∞→
−=  

for all .Xx ∈  Let 0=m  in (2.9), we have 

( ) ( ) ( )
( )

,,,,1,
2
2

1
21

2
















ϕ
α

′≥









−

+α
=∑ kn

k

n

n txxxNtxfxfN  

for all Xx ∈  and .0>t  By (N4), we have 

( ) ( )( ) ( ) ( ) ( ) ( ) ,2,
2
2,2,

2
2min,























−










−≥− txfxfNtxfxHNtxfxHN n

n

n

n
 

(2.10) 

for all Xx ∈  and .0>t  Taking ∞→n  in (2.10) and using (N6), we get 

( ) ( )( ) ( ) ( ) 









−≥−

∞→ 2,
2
2lim, txfxfNtxfxHN n

n

n
 

( )
( ) 
















ϕ
α

′≥
+α

=

∞→ ∑ 1
21

2
2

,,,1lim
kn

k
n

txxxN  
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( ) ,,2
,,









α−
ϕ′= txxxN  

for all Xx ∈  and .0>t  

Next, we show H is C -linear. By (N4), 

( ( ) )
( )( )

,5,
2

2
222min,,, 2



















 λ+
−






 λ+λ+λ≥

λ+λ

λ
tzf

zyxHNtzyxHCN n

yxn

 

( ) ( ) ( ) ( ) ,5,
2
2,5,

2
2











λ−λ










λ−λ tyfyHNtxfxHN n

n

n

n
 

( ) ( ) ( ) ,5,2,2,2
2
1,5,

2
222
























λ−λ λ

tzyxfCNtzfzHN nnn
nn

n
(2.11) 

for all Xzyx ∈,,  and .0>t  Taking ∞→n  in (2.11) and by (2.2) and 
(2.3), we have 

( ( ) ) ( ) 





≥ λ∞→λ 5,2,2,2

2
1lim,,, tzyxfCNtzyxHCN nnn
nn

 

( ) ,15,2,2,2
2
1lim =






 ϕ′≥

∞→

tzyxN nnn
nn

 

for all Xzyx ∈,,  and .0>t  So, ( ) 0,, =λ zyxHC  for all 1T∈λ  and all 
.,, Xzyx ∈  It follows from Lemma 2.2 of [14] that the mapping 

XXH →:  is C -linear. 

It follows from (2.4) that 

( [ ]( ) ( ) ( ) ( )[ ] )szHyHxHzyxHN ,,,,, −  

[ ]( ) ([ ])
















−≥ ,3,

2
2,2,2,,min 3

szyxfzyxHN n

nnn
 

( ) ( ) ( )[ ] ( ) ( ) ( ) ,3,
2
2,

2
2,

2
2,, 






















− szfyfxfzHyHxHN n

n

n

n

n

n
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( ([ ]) [ ( ) ( ) ( )]) ,3,2,2,22,2,22 3












 −− szfyfxfzyxfN nnnnnnn  (2.12) 

for all Xzyx ∈,,  and .0>s  Taking ∞→n  in (2.12) and by (2.2), we 
get 

( [ ]( ) ( ) ( ) ( )[ ] )szHyHxHzyxHN ,,,,, −  

( ([ ]) [ ( ) ( ) ( )]) 




 −≥ −

∞→ 3,2,2,22,2,22lim 3 szfyfxfzyxfN nnnnnnn
n

 

( ) ,13,2,2,22lim 3 =




 ϕ′≥ −

∞→

szyxN nnnn
n

 

for all Xzyx ∈,,  and .0>s  Therefore 

[ ]( ) ( ) ( ) ( )[ ],,,,, zHyHxHzyxH =  

for all .,, Xzyx ∈  

Let YXH →′ :  be another ∗C -ternary homomorphism satisfying 
(2.5). Then 

( ) ( )( ) ( ( ) ( )) 





 ′−=′−

∞→
txHxfNtxHxHN nn

nn
,22

2
1lim,  

( ) ,1,2
2,2,2

2
1lim =










α−

ϕ′≥
∞→

txxxN
nnn

nn
 

for all Xx ∈  and .0>t  Thus, ( ) ( )xHxH =′  and this proves the 
uniqueness of H.    

Corollary 2.2. Let X be a normed linear space (with norm ⋅ ) and 

( )NY ,  be a fuzzy Banach space. Denote by ,N ′  the fuzzy norm obtained 

as Example 1.2 on .R  Assume that ,20,1,0 <α<<>θ p  and .2 α<p  

Suppose YXf →:  is an odd function such that 

( ( ) ) ( ( ) ),,,,, tzyxNtzyxfCN ppp ++θ′≥λ  

and 
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( ([ ]) ( ) ( ) ( )[ ] ) ( ( ) ),,,,,,, szyxNszfyfxfzyxfN ppp ++θ′≥−  

for all Xzyx ∈,,  and all .0, >st  Then, there exists a unique 

-∗C ternary homomorphism YXH →:  such that 

( ) ( )( ) ( )
( )

,
32

2, pxt
ttxHxfN

θ+α−

α−≥−  

for all Xx ∈  and .0>t  

Proof. Let 

  ( ) ( ),,, ppp zyxzyx ++θ=ϕ  

for all .,, Xzyx ∈  Then 

 ( )( )
( )ppp zyxt

ttzyxN
222

,2,2,2
++θ+

=ϕ′  

 
( )ppp zyxt

t
++αθ+

≥  

 ( )( )tzyxN ,,,αϕ′=  

( ) ( ) ( )
,1

2
lim,2,2,2

2
1lim 1 =

++θ+
=






 ϕ′

−∞→∞→ ppppnn
nnn

nn zyxt
ttzyxN  

for all Xzyx ∈,,  and all .0>t  It follows from Theorem 2.1 that there 

is a unique ∗C -ternary homomorphism YXH →:  such that 

( ) ( )( ) ( ) ( )
( )

,
32

2,2
,,, pxt

ttxxxNtxHxfN
θ+α−

α−=







α−
ϕ′≥−  

for all Xx ∈  and all .0>t    

Theorem 2.3. Let X be a linear space and ( )NZ ′,  be a fuzzy normed 

space. Let ZX →ϕ 3:  be a function such that for some ( )∞∈α ,2  

( )( ),,,,,2,2,2 tzyxNtzyxN αϕ′≥













ϕ′  (2.13) 
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,1,
2

,
2

,
2

2lim =













ϕ′

∞→
tzyxN nnn

n
n

 (2.14) 

for all Xzyx ∈,,  and all .0>t  Let ( )NY ,  be a fuzzy Banach space 
and let YXf →:  be an odd function such that 

 ( ( ) ) ( ( ) ),,,,,,, tzyxNtzyxfCN ϕ′≥λ  (2.15) 

( ([ ]) ( ) ( ) ( )[ ] ) ( ( ) ),,,,,,,,, szyxNszfyfxfzyxfN ϕ′≥−  (2.16) 

for all Xzyx ∈,,  and all .0, >st  Then, there exists a unique 

-∗C ternary homomorphism YXH →:  such that 

( ) ( )( ) ( ) ,,2
,,, 








−α
ϕ′≥− txxxNtxHxfN  (2.17) 

for all Xx ∈  and .0>t  

Proof. Put 1=λ  and zyx ==  in (2.15), we have 

( ( ) ( ) ) ( )( ),,,,,422 txxxNtxfxfN ϕ′≥−  (2.18) 

for all Xx ∈  and all .0>t  Using (2.13) and induction on n, we can 
verify that 

( ( ) ),,,,,
2

,
2

,
2

txxxNtzyxN n
nnn αϕ′≥














ϕ′  (2.19) 

for all Xx ∈  and all .0>t  Replacing x by n
x

2
 in (2.18) and using (2.19), 

we get 

( ( ) ),,,,,
2

4
2

2 1 txxxNtxfxfN n
nn αϕ′≥














−








−
 (2.20) 

for all Xx ∈  and all .0>t  It follows that 

( ) ,,,,12,
2

2
2

2 2
2

2
1

1 





 αϕ
α

′≥













−






 −−

−
− txxxNtxfxfN nn

n
n

n
n  

and whence, 

( ) ,,,,12,
2

2
2

2 2

2

1
1 






 ϕ
α

′≥















α






−






 −

−
− txxxNtxfxfN

n

n
n

n
n  
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for all .0and,,1 >∈≥ tXxn  Then 




















α






−






 −

+=
∑ txfxfN

kn

mk
m

m
n

n
2

1

2,
2

2
2

2  




















α














−






=

−

+=
−

−

+=
∑∑ txfxfN

kn

mk
k

k
k

k
n

mk

2

1
1

1

1

2,
2

2
2

2  

( ) ,,,,1
2 






 ϕ
α

′≥ txxxN  

and therefore, 

( )
( )

,,,,1,
2

2
2

2
22

1

2
















ϕ
α

′≥













−








−
α+=∑ kn

mk

m
m

n
n txxxNtxfxfN  (2.21) 

for all ,,0 Xxmn ∈≥>  and .0>t  

Fix .Xx ∈  Since, ( ) 1,,,1lim 2 =





 ϕ
α

′
∞→

sxxxN
s

 and that 
n

n 






α∑∞

=
2

0  

is convergent, 
















n
n xf

2
2  is a Cauchy sequence in ( )., NY  Since ( )NY ,  

is a fuzzy Banach space, this sequence converges to some point 
( ) .YxH ∈  Hence, we can define YXH →:  by 

( ) ,
2

2lim 





−=

∞→ n
n

n
xfNxH  

for all .Ax ∈  The rest of the proof is similar to the proof of Theorem 2.1. 
 

Corollary 2.4. Suppose X is a normed space with ⋅  and ( )NY ,  is 

a fuzzy Banach space. Denote by ,N ′  the fuzzy norm obtained as Example 

1.2 on .R  Assume that ( ),,2,1,0 ∞∈α>>θ p  and .2 α<p  Suppose 

YXf →:  is an odd function such that 
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( ( ) ) ( ( ) ),,,,, tzyxNtzyxfCN ppp ++θ′≥λ  

and 

( ([ ]) ( ) ( ) ( )[ ] ) ( ( ) ),,,,,,, szyxNszfyfxfzyxfN ppp ++θ′≥−  

for all Xzyx ∈,,  and all .0, >st  Then, there exists a unique ∗C -

ternary homomorphism YXH →:  such that 

( ) ( )( ) ( )
( )

,
32
2, pxt

ttxHxfN
θ+−α

−α≥−  

for all Xx ∈  and .0>t  

Proof. Let 

( ) ( ),,, ppp zyxzyx ++θ=ϕ  

for all .,, Xzyx ∈  Then 

( )
( )pzpypxt

ttzyxN
222

,2,2,2 ++θ+
=






ϕ′  

( )ppp zyxt
t

++θ+α

α≥  

( )( ),,,, tzyxN αϕ′=  

and 

( ) ( ) ( )
,1

2
lim,

2
,

2
,

2
2lim 1 =

++θ+
=






ϕ′

−∞→∞→ ppppnnnnn
n

n zyxt
ttzyxN  

for all Xzyx ∈,,  and all .0>t  By Theorem 2.3, there is a unique ∗C -

ternary homomorphism YXH →:  such that 

( ) ( )( ) ( ) ( )
( )

,
32
2,2

,,, pxt
ttxxxNtxHxfN

θ+−α

−α=







−α
ϕ′≥−  

for all Xx ∈  and all .0>t    
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